Search results for "Training sets"

showing 1 items of 1 documents

Incremental Gaussian Discriminant Analysis based on Graybill and Deal weighted combination of estimators for brain tumour diagnosis

2011

In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning stops once this set has been processed. Training these classifiers requires a representative amount of data, but the gathering, preprocess, and validation of samples is expensive and time-consuming. Therefore, for a classical, non-incremental approach to ML, it is necessary to wait long enough to collect all the required data. In contrast, an incremental learning approach may allow us to build an initial classifier with a smaller number of samples and update it incrementally…

Graybill-Deal estimatorDatabases FactualComputer sciencePopulation-based incremental learningGaussianTraining setsHealth InformaticsMachine learningcomputer.software_genreIncremental algorithmPersonalizationsymbols.namesakeAutomatic brain tumour diagnosisArtificial IntelligenceNumber of samplesMachine learningMagnetic resonance spectroscopyHumansPreprocessIncremental learningTraining setbusiness.industryBrain NeoplasmsBrain tumoursEstimatorComputational BiologyPattern recognitionLinear discriminant analysisMagnetic Resonance ImagingDiscriminant analysisTranslational research Tissue engineering and pathology [ONCOL 3]Graybill–Deal estimatorComputer Science ApplicationsGaussiansMagnetic resonanceFISICA APLICADAIncremental learningsymbolsEmpirical resultsArtificial intelligencebusinessClassifier (UML)computerEstimationAlgorithmsJournal of Biomedical Informatics
researchProduct